151 research outputs found

    Variable speed pumped storage hydropower for integration of wind energy in isolated grids : case description and control strategies

    Get PDF
    This paper presents the use of variable speed pumped storage hydropower plants for balancing power fluctuations from wind power in an isolated grid. A topology based on a synchronous machine and a full scale back-to-back voltage source converter is suggested for obtaining variable speed operation of a pump-turbine unit. This topology has not been previously investigated for variable speed pumped storage power plants, but can now be considered relevant for small and medium sized pumped storage units because of the development of voltage source converter drives for higher voltage levels. A possible case for implementation of such a system is described based on the situation on the Faroe Islands, where controllable energy storage can help to allow for a higher share of renewable energy in the power system and by that to reduce the dependency on fossil fuels. Power control of the pumped storage unit by load following for direct compensation of the fluctuations in power output from a wind farm will limit the influence on the operation of the rest of the grid. By utilizing the pumped storage to take part in the primary frequency control of the power system, the frequency response to other changes in production or load will also be improved.reviewe

    Impedance-compensated grid synchronisation for extending the stability range of weak grids with voltage source converters

    Get PDF
    This paper demonstrates how the range of stable power transfer in weak grids with voltage source converters (VSCs) can be extended by modifying the grid synchronisation mechanism of a conventional synchronous reference frame phase locked loop (PLL). By introducing an impedance-conditioning term in the PLL, the VSC control system can be virtually synchronised to a stronger point in the grid to counteract the instability effects caused by high grid impedance. To verify the effectiveness of the proposed approach, the maximum static power transfer capability and the small-signal stability range of a system with a VSC HVDC terminal connected to a weak grid are calculated from an analytical model with different levels of impedance-conditioning in the PLL. Such calculations are presented for two different configurations of the VSC control system, showing how both the static power transfer capability and the small-signal stability range can be significantly improved. The validity of the stability assessment is verified by time-domain simulations in the Matlab/Simulink environment.Peer ReviewedPostprint (published version

    Generalized Voltage-based State-Space Modelling of Modular Multilevel Converters with Constant Equilibrium in Steady-State

    Get PDF
    This paper demonstrates that the sum and difference of the upper and lower arm voltages are suitable variables for deriving a generalized state-space model of an MMC which settles at a constant equilibrium in steady-state operation, while including the internal voltage and current dynamics. The presented modelling approach allows for separating the multiple frequency components appearing within the MMC as a first step of the model derivation, to avoid variables containing multiple frequency components in steady-state. On this basis, it is shown that Park transformations at three different frequencies (+ω+\omega, 2ω-2\omega and +3ω+3\omega) can be applied for deriving a model formulation where all state-variables will settle at constant values in steady-state, corresponding to an equilibrium point of the model. The resulting model is accurately capturing the internal current and voltage dynamics of a three-phase MMC, independently from how the control system is implemented. The main advantage of this model formulation is that it can be linearised, allowing for eigenvalue-based analysis of the MMC dynamics. Furthermore, the model can be utilized for control system design by multi-variable methods requiring any stable equilibrium to be defined by a fixed operating point. Time-domain simulations in comparison to an established average model of the MMC, as well as results from a detailed simulation model of an MMC with 400 sub-modules per arm, are presented as verification of the validity and accuracy of the developed model

    Bisection Algorithm based Indirect Finite Control Set Model Predictive Control for Modular Multilevel Converters

    Get PDF
    In this work, an idea based on the bisection algorithm is used to reduce the computational burden of indirect finite control set model predictive control (FCS-MPC) for modular multilevel converters (MMCs). The proposed method greatly reduces the search space for reaching the optimal insertion index (number of submodules to be inserted). Therefore, the strategy proposed offers similar steady-state and dynamic performance compared to full indirect FCS-MPC at a much lower computational burden. A new cost function is also proposed for indirect FCS-MPC which eliminates the need for an outer loop or additional control of differential current to regulate the summation voltages in each arm. The results of the proposed strategy are validated through simulations in MATLAB/Simulink.acceptedVersio

    A multi‐layer framework for energy efficiency assessment of shore‐to‐ship fast charging systems including onshore batteries

    Get PDF
    This paper proposes a three-layer framework for energy efficiency evaluation of Shore-to-Ship Charging (S2SC) systems using load-dependent loss models of the components. The considered S2SC system is supplied by the grid but is also supported by On-Shore Batteries (OSB). The presented approach is then used to investigate the impact of the specific design and operational parameters on energy efficiency. Power system architectures for three general S2SC solutions for ac, dc, and inductive charging are defined and compared in terms of energy efficiency. Operational parameters are also considered in the analysis, namely, the grid power ratio, determining the load sharing between the grid and the OSB, as well as the OSB charging profile. A case study is performed with peak charging power of 1 MW, and the most efficient S2SC solutions are identified for both ac- and dc-based onboard power systems. Moreover, it is shown that charging OSB with the highest available power from the grid between the charging breaks would often lead to higher energy efficiency than the maximum utilization of the available charging time. Field data from a real S2SC system is used to verify the estimated energy efficiency by the proposed framework. The analysis of the real case S2SC is then extended to include and verify a projected OSB. © 2022 The Authors. IET Electrical Systems in Transportation published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.A multi‐layer framework for energy efficiency assessment of shore‐to‐ship fast charging systems including onshore batteriespublishedVersio

    Position Locking for Permanent Magnet Synchronous Machine Propeller Drives in Drones by Hall-Effect Sensor-Assisted Nonlinear Observer

    Get PDF
    The paper presents a hall-effect sensor-assisted non-linear observer-based solution for position locking of a surface-mounted permanent magnet synchronous motor (SMPMSM) propeller drive in drone applications. The purpose of the position locking is to ensure a fixed motor position at the landing instant to avoid mechanical damage to the propeller. To evaluate the proposed solution, the position locking sequence of the motor drive is studied for two cases, implemented with two different state machines. The first case is relying on an encoder to provide the position feedback signal and serves as a reference for assessing the performance of the proposed solution based on the position estimate from the hall-effect sensor-assisted nonlinear observer. Experimental results show how the proposed solution can provide sufficient performance of position locking without the encoder.Position Locking for Permanent Magnet Synchronous Machine Propeller Drives in Drones by Hall-Effect Sensor-Assisted Nonlinear ObserveracceptedVersio

    P-HiL Evaluation of Virtual Inertia Support to the Nordic Power System by an HVDC Terminal

    Get PDF
    This paper provides an assessment of the effect from virtual inertia provided by an HVDC converter terminal on the Nordic power system. The analysis is based on results from Power-Hardware-in-the-Loop (P-HiL) tests with a laboratory-scale Modular Multilevel Converter (MMC) representing an HVDC terminal interfaced with a real-time phasor simulation of the Nordic grid. The applied control method for providing virtual inertia is utilizing the derivative of the locally measured grid frequency to adapt the power reference for the studied converter terminal. The power injection provided by the converter and the resulting impact on the frequency dynamics of the power system are investigated as a function of the emulated inertia constant and the frequency droop gain. The results demonstrate how the HVDC converter can effectively support the dynamic response of the power system when exposed to large load transients by improving the frequency nadir and reducing the Rate-of-Change-of-Frequency (ROCOF). Keywords: HVDC Transmission , Power-Hardware-in-the-Loop , Real-time Simulation , Virtual InertiaacceptedVersio

    Evaluation and Suppression of Oscillations in Inductive Power Transfer Systems with Constant Voltage Load and Pulse Skipping Modulation

    Get PDF
    This paper identifies how Constant Voltage Load (CVL) characteristics cause Inductive Power Transfer (IPT) systems to exhibit a poorly damped oscillation mode. When operated with pulse skipping strategies such as Pulse Density Modulation (PDM), the skipped voltage pulses can excite this mode and cause severe oscillations that do not appear in systems with a constant resistance load (CRL). The critical mode is identified from a linearized state-space model of the system and two control approaches are proposed for attenuating the oscillations in current amplitude and power flow. Firstly, the influence of the operating frequency on the critical eigenvalue is analyzed and it is shown how slightly off-resonant operation can increase the damping of the oscillation mode. Secondly, an active damping method based on sending current feedback control is studied. The active damping is based on Phase Shift Modulation (PSM) with limited phase shift angles applied to the PDM signal when oscillations are detected. The effectiveness and feasibility of the proposed methods are validated by simulations and experimental results from a small-scale laboratory prototype.Evaluation and Suppression of Oscillations in Inductive Power Transfer Systems with Constant Voltage Load and Pulse Skipping ModulationacceptedVersio

    Understanding of tuning techniques of converter controllers for VSC-HVDC

    Get PDF
    A mathematical model of a voltage source converter is presented in the synchronous reference frame for investigating VSC-HVDC for transferring wind power through a long distance. This model is used to analyze voltage and current control loops for the VSC and study their dynamics. Vector control is used for decoupled control of active and reactive power and the transfer functions are derived for the control loops. In investigating the operating conditions for HVDC systems, the tuning of controllers is one of the critical stages of the design of control loops. Three tuning techniques are discussed in the paper and analytical expressions are derived for calculating the parameters of the current and voltage controllers. The tuning criteria are discussed and simulations are used to test the performance of such tuning techniques.reviewe
    corecore